
Challenge 24

11th BME International 24-hour Programming Contest

http://ch24.org

1

Contest
Welcome to the 11th BME International 24-hour Programming Contest!

Rules

The contest starts at 2011-04-30 09:00 CEST and ends at 2011-05-01 09:00 CEST.

No solution can be submitted after the 24 hour time is up.

Submission site

The same submission system will be used as during the Electronic Contest. It will be available through the
https://10.0.0.1/sub url.

There are various kinds of problems, with various scoring rules and submission methods. Here we provide
a short summary:

Task
Web

submission
Interactive

Score decreases
with time

Penalty for wrong
answer

Scaling Scheduled

A Yes No Yes Yes No No

B Yes No Yes Yes No No

C Yes No Yes Yes No No

D Yes No Yes Yes No No

E No Yes No Yes Yes No

F No Yes No No No Yes

G No Yes Yes No No No

H No Yes No No No Yes

I Yes Yes No Yes No Yes

J Yes Yes No Yes No Yes

K No Yes No No No No

L No Yes No No No Yes

Web submission: A static output file must be uploaded through the submission site.
Interactive: During the solution or the submission, either network communication or other kind of
interaction is necessary.
Score decreases with time: Submitting at the end of the contest worth 70% of the score at the
begining.

2

https://10.0.0.1/sub

Penalty for wrong answer: Wrong answer gets -5 points (different value may be specified explicitely
in the task description).
Scaling: The score for this problem may change over time depending on submissions by other teams.
(Note that your last submission is considered and not your best one.)
Scheduled: Must be submitted or solved at a scheduled time (cannot be postponed later).

Important:

There are a couple of problems which need immediate attention, namely: GH, IJ

Contact

Important announcements will be made on IRC so please join the #announcements channel on the irc
server at 10.0.0.1 (using the default port, 6667). The log files of this channel will be published on the
https://10.0.0.1/announcements url.

For general discussions and questions join the #challenge24 channel.

There will be separate channels for task related problems as well: #A, #B, #C, #DE, #F, #GH, #IJ , #K,
#L .

3

https://10.0.0.1/announcements

A. Garbage (1000 points)
We have N cities (numbered 1-N) and bidirectional roads between them. Each road has a length. Some
cities have recycle plants which are able to recycle some types of garbage. There are 26 types of garbage
(a-z).

The task is to recycle a garbage-string while we have to minimize the total moving cost. The moving cost
of a garbage-string is equal to the length of the road (independently from the length of the garbage). We
can cut a string into several smaller strings anywhere, but multiple strings cannot be attached to form one
longer. We can recycle a string at a city if it contains only the kind of gargabe that can be recycled there.

Input

Each input contains multiple test cases, each test case looks like this:

First line: N M L S (number of cities, number of roads, length of initial garbage string, starting city of the
garbage)

Next N lines: k_i t_i (t_i is a k_i characters long string specifying the types of garbages that the ith city
can recycle)

Next M lines: a_j b_j w_j (road between cities a and b with length w)

Last line: g (the garbage string (L characters long))

After the last test case, there will be "0 0 0 0" in the last line.

Output

For each test case output the minimal total cost on a separate line, or -1 if the test case is not solvable.

Sample input

3 2 6 1
1 a
1 b
2 cb
1 2 1
2 3 2
abbcab
0 0 0 0

Sample output

4

4

B. Layout (1000 points)
Rabbit has organized an elaborate peer-to-peer network in the forest with his friends-and-relations.
Although by some magic the network works perfectly, it turned out to be incredibly intricate, and Rabbit
decided to draw a huge Map to help him oversee maintenance operations. The Map should contain Nodes,
and Edges between them as straight lines, in a way that no Edge intersects another one.

However hard he tried, Rabbit couldn’t draw a proper Map - somehow some Edges always intersected.
One of his relations then came up with a clever plan - what if it was allowed for an Edge to go out the side
of the map and come in from the other side? (In the language of the forest, this was called a "Toroidal
Map".) It turns out this makes it possible to draw the Map - but it’s a new and unexpected task for Rabbit,
and he asks You for help.

Input and Output

the first line of the input is two integers - number of Nodes and number of Edges
then for each Edge, a line follows with two integers - N1 and N2. An edge exists between Nodes N1
and N2 (Nodes are numbered from 0).

The Map will be drawn as 1000x1000 units big. Your output should look like this:

first, one line per Node, in order, with two integers each - X and Y, specifying the position of the
Node on the map. Neither X or Y can be on an edge - so the minimum is 1, the maximum is 999 for
both coordinates. Two Nodes cannot occupy the same position.
then, for each Edge (in order of the input file) a line with two integers: SX and SY.

The Edges will be drawn as straight lines:

 N1X, N1Y -> N2X + SX*1000, N2Y + SY*1000

In short, SX and SY specify the "screen offset". Both SX and SY must be between -2 and +2 (inclusive). If
SX and SY are 0, the Edge doesn’t cross the side of the map. For example, if SX is -1 and SY is 0, then
the Edge will start at N1, cross the left side of the map, come in from the right side and end at N2.

Neither Edges, nor any of their segments may intersect.

Example

For example, take this simple network (note that it’s of course possible to draw this network on an
ordinary Map):

4 2
0 2
1 3

5

If you lay out the Nodes in a counter-clockwise order, drawing both Edges locally will result in a bad
solution:

300 300
700 300
700 700
300 700
0 0
0 0
This can be fixed by having one of the Edges cross the side of the Map:

300 300
700 300
700 700
300 700
0 0
1 0

6

Here is another bad solution, where the Edge segments don’t intersect, but the Edges themselves do:

300 300
700 300
700 700
300 700
-1 0
1 0

7

C. Image compress (1000 points)
A new image compression algorithm is based on repeated rectangular areas on the image.

You need to write a subroutine for the encoder that finds the largest such area pair on a given image.

Input

The input is an NxN size 1 bit per pixel png image (black and white pixels only).

Output

The output should contain six integers separated by space, representing a largest repeated rectangle pair.

format: W H X1 Y1 X2 Y2

where W,H are the width and height of the rectangles and X1,Y1 and X2,Y2 are the two top left corners.

All the pixels in the (X1,Y1,W,H) rectangle must match to the ones in the (X2,Y2,W,H) rectangle and
(X1,Y1) != (X2,Y2).

W*H must be the maximum possible. The rectanges must be on the image.

The coordinates of the top left corner of the image is (0,0).

Example

Assume that the input is a 8x8 pixel entirely black image. Then a possible solution is:

8 7 0 0 0 1

8

D-E. Stars

D. Stars - Navigation (1000 points)

You are working on the navigation system of a satellite.

The satellite is on a known orbit around Earth so its position is known. However sometimes its orientation
is not known so it must be determined in order to get the satellite in an operational state.

The satellite has an onboard camera that can take a grayscale picture.

Your task is to develop an algorithm that can determine the orientation from a single image taken by the
onboard camera. An accurate star catalog is available and you can assume that objects of our solar system
won’t be visible on the image, only the stars listed in the catalog.

Catalog

Each star is given by four numbers in the catalog: ID, RA, DEC, MAG. ID is an identifier, RA and DEC
are spherical coordinates and MAG is the magnitude of the star.

The RA, DEC coordinate system can be thought of as a projection of the Earth bound longitude, latitude
system to the sky.

The magnitude of the star can be modelled by -const1*log(brightness/const2) (a brighter star
has smaller MAG).

For more details see the stars.txt file.

Input

The input is a grayscale, 1000x1000 pixel png image.

The field of view of the camera is known to be 20 degrees, so 1000 pixel distance on the image means
approximately 20 degrees difference in direction.

Output

The output should be two 3d unit length vectors: the first line should hold the direction where the camera
looks, the second line is an orthogonal vector that is the upward direction on the image.

The 3d coordinate system oriented so that it is easy to convert between the spherical coordinate system
and the 3d one:

RA=0,DEC=0 is the X direction, so (1,0,0) in the 3d system
RA=pi/2,DEC=0 is the Y direction, so (0,1,0) in the 3d system
RA=0,DEC=pi/2 is the Z direction, so (0,0,1) in the 3d system

9

The direction of the output vectors must be more precise than 0.01 radian.

Samples

Three sample images are provided with reference outputs, so you can calibrate your algorithm: the first
one looks at Sirius, the second one looks at (parts of) the Ursa Major constellation, the third one looks to
the north.

E. Stars - Galaxy designer (1000 points)

It turns out it is fairly complicated to determine the directions for navigation in our solar system.

Try to design a better star distribution in a way that navigation is easy (assuming you only want to
navigate in a central solar system).

Note that the Galaxy Building Project has limited budget so you should use as few stars as possible.

You may use 1000 stars at most, with magnitude in the range [0,10]. Prepare a star catalog in the same
format as in the previous task (ID should be an integer in [1,1000]).

Once you submitted a star catalog, shortly you will get 10 images taken in your newly designed galaxy.

To complete this task successfully you have to send back the orientation for each image similarly to the
previous task, but with a short timelimit.

Protocol

You have to submit your solutions to the Galaxy designer task to a special submission server that uses a
binary protocol. During a successful submission, using a single TCP connection, you will:

1. Send a file: your star catalog
2. Receive 10 files: the test images (in png format)
3. Send a file: the 10 orientations (20 vectors on separate lines)
4. Receive a score.

To send a file, you send its length as a 4-byte integer, then the file itself. To receive one, you first read its
length as a 4-byte integer, then the file itself. The score is also sent as a 4-byte integer. All integers (so the
sent and received lengths, and the received score) are in network byte order (see htonl() , ntohl()
or similar).

If there is any error during this procedure (such as a protocol error, or an internal error), the server will just
close the connection. If the cause is unclear, please ask an organizer (and tell them the exact time of the
submission).

After you send your star catalog, the server will render 10 test images (this may take a bit of time, up to a
minute), and send them back to you. After the server starts sending the images, you have 30 seconds to
calculate the orientations and send them back as a single file (concatenated in order).

10

Scoring

This is a scaled problem. An accepted submission is worth

SCORE = 200 + 800 (5 - N/M)/4

where N is the number of entries in the star catalog and M is the best submission so far. This means a good
submission is worth 200 points, but there is a large bonus if your catalog is short compared to other teams.

For wrong answers the penalty is -5 points.

11

F. Fungus (3000 points)

The Game

So it happened that one of the organizers accidentally kicked a pile of discarded petri dishes. The virulent
strains of fungi that before occupied the fetid creases of his foot have been released into the nutritious
gelatin. They are now engaged in a biological fight to the death.

Your team now has the opportunity to control one of these strains and prove its genetic superiority.

Rules

The map is built from rectangular cells with X;Y coordinates (0 <= X < W, 0 <= Y < H). On each cell
there may be a stack of food or a stack of fungi of a team (different teams have different type of fungi). A
team may command fungi to move to an adjecent cell.

when N fungi move from a cell to another cell occupied by the same team, N is substracted from the
first cell and added to the other cell’s height.
when N fungi move from a cell to a cell occupied by M food, the food is converted to fungi of the
same type, resulting totally in N+M fungi.
when N fungi of team A move to a cell of M fungi of team B they fight. if N > M, result is N-M fungi
of team A; if N < M, result is M-N fungi of team B; if N == M, result is empty cell.

For each tick, moves of a single team are processed. 30 ticks (one for each team) forms a round. Teams
may place commands any time, but only the last 500 commands will be considered (in case of multiple
commands for the same cell, only the last one will run). Invalid commands are ignored, all valid
commands run in "parallel" (one set of fungi will move only once).

After each such move, the new standing is broadcasted to all teams (only diff).

Before the beginning of the game, the original map is published.

Scores are calculated at end of each game for every team in the following way:

connected components of the team’s fungi are calculated
for each connected component, its score is calculated:

the convex hull of the midpoints of the cells in the component is calculated
each cell within the hull (whose midpoint is inside or on the boundary of the hull) is worth:

cell occupied by the team: 2
cell not occupied by any team: 1
cell occupied by another team: 0

team’s score is the sum of their components’ score
teams are ranked based on these scores
if a team is ranked n-th in the k-th game (see schedule) then it gets round((30-n)*k*3000/8700) points

12

Map format

At the beginning of each game, a PNG image is published on web at https://10.0.0.1/fungus. The size of
the PNG image determines W and H. The top-left corner of the image has coordinates 0;0. The top-right
corner of the image has coordinates W-1;0. Cells outside the map have RGB color 0,0,0 (black). Initially
there is no cell with more than 15 fungi or more than 15 food on it. Cells inside the map have two types:

food with height h has gray color with (R=G=B=floor((16-h)/16*255)
fungi with height h has color (R=floor(A*(16-h)/16*255), G=floor(B*(16-h)/16*255),
B=floor(C*(16-h)/16*255)) where A,B,C is the reference color of the team

Team number Team name Reference color (A,B,C)

1 rusty 1,0,0

2 Grotzsch_Men 1,0.33,0

3 Sparrows24 1,0.67,0

4 The_Teddyborg 1,1,0

5 SRM 0.67,1,0

6 Saratov.SU2.Retired 0.33,1,0

7 BasicInstincts 0,1,0

8 UPC-Unflapipes 0,1,0.33

9 DrinkLess 0.33,1,0.33

10 croSharks 0.67,1,0.33

11 OrelSTU 1,1,0.33

12 pda 1,0.67,0.33

13 UPC-Siesqueva 1,0.33,0.33

14 Monkey_Island 1,0.33,0.67

15 ETs 1,0.33,1

16 Room_101 0.67,0.33,1

17 Eventually_almost_surely_correct 0.33,0.33,1

18 O.o 0.33,0.67,1

19 WarsawEaters 0.33,1,1

20 uw3000 0.33,1,0.67

13

https://10.0.0.1/fungus

21 funny-noise 0,1,0.67

22 Scorpions 0,1,1

23 Nemterminisztikus_fogoritmus 0,0.67,1

24 DTA 0,0.33,1

25 UPC-Reisub 0,0,1

26 Jackhammer 0.33,0,1

27 Raf 0.67,0,1

28 balloonsRus 1,0,1

29 groundwater 1,0,0.67

30 WeKings_SB_Forever 1,0,0.33

Communication protocol

Each command consists of coordinates of a cell, 4 numbers of fungi to move in each direction. Each
command is in a new line, the six numbers are separated by spaces. For example:

6 3 14 0 1 3\n

this means: from cell 6;3, move 14 fungi to north, 0 to east, 1 fungus to south and 3 to west. If there are
not enough fungi on the cell to do all 4 operations, none of the operations will be done and the command
will be considered invalid. If any of the 4 operation is invalid then the whole command is invalid too.

The server may send the following:

START sec

The game starts in sec seconds.

ROUND now

The now-th round is starting.

TICK teamnum

Team with number teamnum is coming.

x y owner height

The cell with x;y coordinates has a stack of height fungi of team owner. If owner == 0 then it has a stack
of height food.

14

Schedule

Each game has 500 rounds, each tick lasts 0.2 sec, so a game lasts totally 500*30*0.2 sec = 50 min. The
server is started and the initial map is published at every hour. Five minutes later the game begins. It ends
at 55 minutes after the hour. Then the score is calculated and there is a 5 minute break before the next
server is started.

15

G-H. Dogfight
Problem G. and H. are coupled. To be succesful in H., G. needs to be solved early in the contest. For
more details, please read the scoring section below for task H.

G. Dogfight - simulator (500 points)

Introduction

In this network game, 2 cars are playing dogfight. Rules are the following:

two cars in a fight, each controlled by a team or by AI
there is a minimal speed - if a car goes slower, it loses the battle
cars leave trace where they pass by
cars may not cross any of those traces
cars may not cross the boundaries (so called ’environment’)
the server updates car A, then car B, then car A again, etc; a snapshot of the traces is sent after each
update
players may change their command for their next turn any time
command is an acceleration with an upper limit
all numerics are integers in this game

The player who survives longer wins. If both players survive until a specific timeout, the game ends in a
tie.

Simulation

Each player has a current position x, y and a current velocity vx, vy where vx̂ 2 + vŷ 2 >= VMIN^2. Car
position is controlled by player supplied acceleration ax, ay, where ax̂ 2 + aŷ 2 <= AMAX̂ 2.

Updating a car position is done by the following calculation:

check(ax, ay)
vx’ = vx + ax
vy’ = vy + ay
check(vx’, vy’)
x’ = x + vx’
y’ = y + vy’
check(x’, y’)

The next position is connected to the previous one with a trace vector:

line(x, y, x’, y’)

The checks verify the acceleration, velocity and trace crossing constraints. If any of the checks fail or the
new vector intersects with a previous trace vector then the player loses. Otherwise the new vector is added
to the global list of traces and should not be crossed.

16

Initial condition (x0, y0, vx0, vy0) is sent to the players as part of the protocol.

Protocol

Messages from the server

Server messages are all single line text messages, except for the snapshot message, which contains
multiple lines. \n (decimal 10 ASCII) is used to terminate lines. In the following table bold means string
literal, italic means parameter.

syntax
sent to
passive
players?

description

game len yes

Game status: len battles are left before your next battle in this game. If len is
0, you need to play in this battle, if negative, you have already played in this
game (or in other words in this hour), so you shouldn’t expect to play more
battles until the next game (next hour).

turn whose no
Sent when a new turn started, before car states are updated. whose is you or
enemy.

end winner no
Sent when a battle ends. winner has the same syntax as whose in turn , or tie
on tie.

envseg x1
y1 x2 y2

no A line segment of the environment

carpos
whose x y

no
Current position of a car. whose is the same as in message turn . Position of
enemy car is sent only before the first turn.

carvel
whose vx vy

no
Initial velocity of a car. whose is the same as in message turn . Velocity of
enemy car is sent only before the first turn.

snapshot
start
numlines

no

Sending a base64 encoded JPEG of the current standing. numlines lines are
following, then a snapshot end message. Note: JPEG properties and image
characteristics are expected to be different between the simulator and the
actual device. Line width and color may change on the physical device
during the contest.

snapshot
end

no End of snapshot.

Upon connection, commands are sent in the following order:

1. game
2. envseg
3. carvel
4. carpos

17

5. (if car’s just crashed: end)
6. snapshot start (for active players only)
7. (base64 JPEG data; for active players only)
8. snapshot end (for active players only)
9. (delay)

10. turn (for active players only)
11. (loop: go back to step "carpos")

During normal operation the same sequence is used, except for the game message that is sent again only
when a new battle is started (or if the client reconnects). There is also a short delay between snapshot end
and turn . When a player crosses (or touches) and existing line, the server sends end instead of turn and a
new battle starts shortly. Vehicle position for the player is recalculated right after sending the turn
command using the last ax;ay data sent by the player. If no data sent since last update, 0;0 is assumed.

Commands from the client

Command is a single line terminated by a newline (\n, decimal 10 ASCII). The server accepts commands
any time, but will execute only the last one in the player’s turn. If there is no command specified (because
the player is not connected, not sending commands in time or at all), command ax=0, ay=0 is assumed.

syntax description

acc ax ay Set acceleration control for the next turn.

Task

The simulator is provided for the teams to have instant access to a sandbox where they can train their AIs
any time, without waiting for the hardware. Furthermore teams are initially ordered and paired for task H
(dogfight - plotter) according to their performance in the simulator during the first few hours of the
contest.

Players can connect the simulator any time, and the server will allocate a new AI instance to the player
and a battle starts immediately. Each team can have only one connection at a time, upon a new connection,
any existing connection of the team is closed. The server logs the outcome of simulated battles; when task
H starts, this information will be used.

Scoring

The first time a team defeats the AI in the simulator, the team gets 500 points.

18

H. Dogfight - plotter (2500 points)

Task

This round takes place on an actual old-style pen plotter, traces are digitized by an IP camera. The server
is started two hours after the contest starts.

Players should be connected to the server all the time. There is one game per hour. Each game consists at
most 15 battles. The server will pair up two players (of all 30 possible players) for a battle; those two
players are marked active until the end of the battle. All other players are passive. Some messages are sent
only to active players, other messages are sent to all players. Commands can be sent only by the two active
players.

Scoring

Due to the limited availability of the hardware, the scoring scheme of these tasks is quite complex to allow
the best team to score the most. All in all, there are only two things that really matter:

in the soft period, beat the AI earlier than other teams
in the hard period, beat all other teams, winning each battle you play

The 24 hours period is split into a soft and a hard fight period. In the soft period, the hardware is not
running and teams are playing against an AI in the simulator, all teams in parallel. The simulator is
available during the whole contest, but beating the AI in the sim matters more in the soft period.
Whenever a team wins over the AI, we save a time stamp. At the beginning of the hard period we
determine the initial order-of-strength of teams by those time stamps: teams won against the AI earlier are
stronger; strongest team is the first on the list. Those teams who could not defeat the AI during the soft
period are randomly placed at the end of the list.

The soft period takes 2 hours, the hard period takes 22 hours.

Once we have an order-of-strength list, hard round starts. In the hard round, before each game we pair up
teams according to their place on the order-of-strength list and teams fight eachothers. There are 15 pairs
in a game, thus each player plays 1 battle in a game. In that 15 battles, all 30 teams participate exactly
once. A game takes slightly less than one hour. If team A beats team B, and team A was lower on the
order-of-strength list, we swap the two teams before the next game. This does not affect pairing for the
current game but for the next game. On a tie, teams are swapped and neither team gets any score.

At the end, it is not the order-of-strength list that directly matters. Instead, any time a team wins in the
hard period, the team earns score proportional to the strength (at that time) of the team that lost the match.
Beating the strongest team, 1st placed on the order-of-strength list, is worth 120 points while defeating the
weakest team (last on the list) is worth only 4 points. The scale is linear. (So the best team can
approximately earn 2500 points during the 22 battles).

Pairing for each game happens as follows, R being the serial number of the current game, first game is 0:

19

R % 4 is 0: 1 vs 2, 3 vs 4, 5 vs 6, ..., 29 vs 30
R % 4 is 1: 1 vs 3, 2 vs 5, 4 vs 7, 6 vs 9, ..., 24 vs 27, 26 vs 29, 28 vs 30
R % 4 is 2: 1 vs 2, 3 vs 6, 4 vs 5, 7 vs 10, ..., 27 vs 30, 28 vs 29
R % 4 is 3: 1 vs 4, 2 vs 3, 5 vs 8, 6 vs 7, ..., 25 vs 28, 26 vs 27, 29 vs 30

In other words: teams winning more will slowly climb up the list; sometimes a team need to win to keep
its place. Being higher on the list lets the team play games for higher scores against more skilled team AIs.

Example

In the first two hours we will publish example images with appropriate lighting conditions. Please check
the announcement channel.

20

I-J. Radio (500 + 1500 points)

Channel
There is a radio server that accepts 30 connections
(one per team). The server reads a stream of
nibbles from each team, exactly 12000 nibbles per
second (MSB nibble is read first from bytes). MSB
of each nibble must be 1 (the "transmit bit"), LSB
3 bits encode an unsigned amplitude between 0
and 7. When a team is not submitting or when
transmit bit is not 1, all zeros are assumed from the
team.

Furthermore there is an input fifo and a filter for
each team. The fifo is used to eliminate network
latency problems: teams should keep the fifo filled
for at least 2 seconds ahead in time to ensure
smooth transmission. The filter implements a
moving average of the last 6 samples of the player.

Signals from all 30 teams are mixed and some
white noise is added: active nibbles from the
buffer are all summed (<=7*30) and a random
number between 0 and 15 (white noise) is added
and "broadcasted" (sent back on all active
connections) as "live broadcast". Broadcast format
is 12000 unsigned bytes per second, each byte is
an amplitude value. Because of all the expected
network latency on team transmission and server
"broadcasting", send and receive will not be in
sync, but broadcast will have a varying delay. Data
flow paths and connections are illustrated below.

21

22

The server also hosts a reference file provided over http. Once every 30 seconds the file is replaced with a
new one. Past reference files are not accessible.

Task
Teams should observe the reference file and encode enough information in the live stream to be able to
restore the file content later. The server starts checking and scoring this ability after 4 hours of the contest
by making 30 second snippets of the live broadcast available from time to time, each starting exactly when
a new reference file was published in the past. The team shall send back a reference file; if the submitted
file matches the the reference file that was published in the same 30 second period when the record was
taken, then the submission is accepted and the team gets a score, else the submission fails, the team gets a
penalty and the team may try again.

Note: due to the method used for recording the stream, playback may have different noise compared to the
live broadcast.

Networking and buffering
Each team may have a TCP connection to the server. If a new connection is established from the same
team, the server will close the old connection. Team fifo persists accross connections: if the team feeds 5
seconds worth of material in the fifo from a client then reconnects with another, the new client will start
appending to that 5 seconds.

Submission
After 4 hours, every 15 minutes the server picks a random snippet from the whole history of the
broadcasting and publishes it on a web server as the next input file. Teams should submit the reference file
that was available for the longest time during the time the recording was taken.

Scoring

This task is divided into two parts, task I and task J.

Task I consists of the initial 4 hours and a 10 hours submission period, so 40 submissions total. Each
accepted submission is worth 12 points, the penalty for wrong answers is -2 points.

After the 14 hours the radio broadcast will be reset. Task J consists of a 10 hour submission period, the
published snipets will be only taken from the broadcasting after the 14 hours. There will be no published
snipet in the 14th hour and 24th hour so in this task there will be 38 possible submissions. Each accepted
submission is worth 40 points and the penalty is -5 points.

The reference file for the same snipet can only be submitted once.

23

K. Punchcard (2800 points)
Some people strongly believe that the only durable data storage is paper. A popular way to store data on
paper is using punch cards or punch tapes. If we already have a processor controlled device that can
read/write the cards, we can use spare resources to implement stand-alone applications. To demonstrate
the idea, a minimalistic implementation is provided for testing during the 24 hours of the contest.

The firmware provides access to a custom 4-bit processor and is programmed to read programs from
punch cards then process data cards running the program. Teams shall submit programs on paper. To
avoid producing excess amount of little paper cutouts, we use pens to mark holes on the paper: a black
solid mark means 1, no mark means 0. Marks should be at least 4 mm in diameter.

4-bit CPU specification
This is a 4-bit computer, handling nibbles. Whenever multiple nibbles are stored and handled as a single
number, the first nibble contains the least significant bits; bits from left to right in a nibble is MSB ->
LSB. Example: "0001 1010" as a 8 bit unsigned value is 161 in decimal. The only exception is when
explicitly specified otherwise.

4-bit Registers

code name description

0 A acc

1 STATUS status SDZC: SI page, DI page, zero, carry

2 SI source index

3 DI destination index

Instruction set summary

0000 LDAS move [SI] to A

0001 STAD move A to [DI]

0010 ADDAD add A to [DI], store result in [DI]; updates C and Z

0011 ADDAA add A to [DI], store result in A; updates C and Z

0100 ADDADC add A to [DI] and C, store result in [DI]; updates C and Z

0101 ADDDAC add A to [DI] and C, store result in A; updates C and Z

0110 ADDSDC add [SI] and [DI] and C, store result in [DI]; updates C and Z

0111 NOP no operation

24

1000 iiii LDA i load A with immed

1001
iiiiiiii

JMP i jump to address i

1010 INVALID (invalid instruction)

1011
iiiiiiii

CALL i absolute call to address i

1100 rrbb BTC r,b set bit b in register r to 0

1101 rrbb BTS r,b set bit b in register r to 1

1110 ddss MOVE d,s move value from register s to register d

1111 0000 LDAD move [DI] to A

1111 0001 STAS move A to [SI]

1111 0010 RET return from call

1111 0011 NAND nand A to [SI], store result in A

1111 0100 SKZ skip next instruction if Z

1111 0101 SKC skip next instruction if C

1111 0110 LOOPI
decrement CNTR, increment SI, increment DI; skip next instruction if CNTR is
zero;

1111 0111 LOOP decrement CNTR, skip next instruction if zero

1111 1011 SBAD sub A from [DI], store result in [DI]; updates C and Z

1111 1100 SBDA sub A from [DI], store result in A; updates C and Z

1111 1101 DECA decrement A

1111 1110 INCA increment A

1111 1111 FIN task finished

Syntax used in the table: [SI] or [DI] means internal random access memory (RAM) or
one-time-programmable memory (OTP, paper) indexed by SI or indexed by DI (indirect memory access).
Whether RAM or OTP is used depends on S and D bits of the STATUS register (see below).

25

Data memory

RAM map (page 0):

0 RAM0: ram

1 RAM1: ram

2 RAM2: ram

3 RAM3: ram

4 RAM4: ram

5 RAM5: ram

6 CNTR: counter

7 IPHI: instruction pointer high

8 IPLO: instruction pointer low

9 IPHD: in: phototransistors (data)

10 IBIN: in: bin (3210; 0: index; 1: paper end A; 2: paper end B; 3:)

11 OVOL: out: SPK volume

12 OFRQ: out: SPK freq

13 ODIR:
out: in linear mode motor directions (3210; 0:- 1=paper_seek 1: pen 0=up 1=down; 2:
0=pen left 1=pen right 3: 0=paper+ 1=paper-); in seek mode target row

14 OMOV:
out: motor enable (3210; 0: mode 0=linear move 1: allow pen; 2: allow left/right; 3: allow
paper)

15 DLY: if >0, delay DLY cycles and set DLY to 0

Any non-ram is device mapped in. in devices should not be written. See how to handle IPHI and IPLO
writes below.

memory map (page 1): 0..15: OTP slots on paper

Code memory size: at most 100 nibbles

code memory: 128 nibbles

Reset condition: IP (among with IPLO, IPHI), A, STATUS, SI and DI are all reset to 0. Content of other
registers in the internal ram is unspecified. Content of the OTP depends on the input. Code memory
beyond the submission length is filled with invalid instructions (to avoid leakage of other team’s code).

26

IPHI and IPLO

IP is updated after the current instruction is already fetched from the code memory. The current instruction
thus can access the address of the next instruction in IPHI and IPLO. In case the instruction modifies IPHI
or IPLO the very next instruction will be fetched from the new address.

Submission

cards

Cards are preprinted forms on 297*63 mm stripes of paper. There are two type of cards: code and data.
Bits on the code cards need to be filled in by the teams using the provided thick tip black pens. Teams may
request code cards any time during the contest. Header fields of the code card needs to be filled in using a
thin tip pen:

Team: team name or ID
Cookie: per team unique identifier of the submission; must end in "/X" where X is the taskid (the ID
of the task the submission is for)
Page: x of y, where x is page number of the given card, y is the total number of pages of the current
submission

The leftmost column of preprinted black circles is the index column. Four bits of data is stored in each
horizontal row that lines up with such an index dot. Data bits are either left white (for value 0) or marked
(for value 1). A marking should be a solid black circle of 4..5 mm in diameter.

The first two rows of the first page (row 0 and 1) of the submission encodes the size of the submission
(first row is the least significant nibble; leftmost bit in a row is the most significant bit of the nibble; the
size and CRC nibbles are not added to this size). Row 2 contains a CRC calculated for the rest of the lines
up to size. Because of the limit on code size, a submission is never longer than 5 pages.

Data cards look exactly like code cards but are marked as data and will be fed in the device after all code
cards for a given program. A program consists any amount of code cards between 1 and 5 (inclusive) and
a single data card.

CRC

The pseudo-code of the 4 bit CRC algorithm is

function crc4(nibbles[], len)
 crcpoly := 0x3
 crc := 0

 for i := 0 to len - 1 do
 crc := crc xor nibbles[i]
 for j := 0 to 3 do
 crc := crc * 2
 if (crc and 0x10) != 0 then
 crc := crc xor crcpoly
 end
 end

27

 end
 crc := crc and 0xf
 return crc
end

submission procedure

Teams submit their solution by handing over a full set of code cards to the operator who places the set in
the input queue and enters team/cookie/taskid information into the database where the submission is
marked as pending. Eventually the submission will get feeded in the device by the operator when the
device becomes available. After all code cards for a submission are read by the device, it will calculate the
CRC and stops with error if it does not match the CRC on row 2 on the first page. When CRC matches,
the operator takes a data card with preprinted input data, fills in the header with team name and submisson
cookie and feeds it in the device. The device will then start executing the code, reading and writing the
data card in random access mode. When a FIN instruction is executed, the device stops and beeps and the
operator removes the data card. After evaluation, the operator enters the result of the submission (score)
into the database, where the team/cookie/taskid state will be changed from pending to evaluated. Data
cards for test-run submissions are collected by the operator in an unlimited result queue and teams may
pick up their data cards (among with their old code cards) any time during the contest. Data cards of
for-score submissions are discarded.

Since the capacity of the hardware is limited, submissions are accepted only in the first 23 hours of the
contest. There is an input queue for the hardware; each team may have a single submission in the queue.
A team may cancel its last submission and add a new one, but that will be added at the end of the queue.
When the device becomes available, the operator will always take the first submission in the queue.
Runtime is accounted from the time the data card was succesfully inserted. If a program does not finish
within a predefined timeout, evaluation of the submission is interrupted and the result is "failure due
timeout".

Furthermore, for-score submissions always have priority over test-run submissions. In emergency cases
(queue grows too long near the end of the contest or hardware failure), organizers may decide to evaluate
submissions on a simulated device.

test-run submission

In test-run submissions teams submit both code cards and data card. After the evaluation the team gets
back all cards. The team does not get any score by this method. This method is provided for allowing
teams to debug their code on the real device in an off-line manner.

for-score submission

When a team is ready with a task, a for-score submission should be entered in the queue. In this case the
team submits all code cards for the task and organizers provide a data card. At the end of the evaluation,
the team will learn how the code finished (i.e. by running the FIN instruction, timeout, or other error). In
case of a succesful execution (program ends with FIN within time), the organizers evaluate the output on
the data card and also report whether the result is correct or not, and in case of a correct result, the team
gets scores for the input (and no more submission is accepted for the same input). Teams can not read the
data cards of for-score submissions.

28

trace submission

A simple web interface is provided for submitting cards containing at most 10 nibbles. In return the server
dumps a trace. This service should be used to find out how the CPU works. The specification is as
complete as it can be at this point, any question about how the CPU handles a specific instruction shall be
checked on the trace submission server.

Tasks

Each task is worth 400 points.

task, input, output

1

add two 16 bit numbers

input on paper:
4..7: op1 (MSB first)
8..11: op2 (MSB first)

output on paper:
0..3: sum (MSB first)

2

sum N 4 bit numbers in a 8 bit accumulator with overflow detection

input on paper:
3: number of operands (N)
4..N+4: operands

output on paper:
0: sum, least significant nibble
1: sum, most significant nibble
2: non-zero on overflow

3

find largest 4 bit number in input

input on paper:
1: number of operands (N)
2..N+2: operands

output on paper:
0: largest number

4

count zero bits in a nibble

input on paper:
0: input nibble

output on paper:
1: number of zeros in input

29

5

logical operation: rotate right (4-bit). Shift bits one position to the right; LSB falling out on the right
should come back in from the left (MSB).

input on paper:
0: input nibble

output on paper:
1: rotated nibble

6

logical operations: shift right (4-bit). Shift bits one position to the right, discarding excess LSB bit.
MSB filler bit is 0.

input on paper:
0: input nibble

output on paper:
1: shifted nibble

7

Print human-readable roman numbers, readable when card is rotated 90 degrees CW or CCW. For 0
use normal arabic 0.

input on paper:
0: input number between 0 and 3 (inclusive)

output on paper:
from 1: roman digits
There shall be one empty line between each roman digit. 0 is ’f9f’, I is ’f’.

30

L. Multitetris (2000 points)
Here is a simple networked two-player variant of tetris - with a couple of twists. Instead of two separate
boards, the players play on the same board, with their pieces falling in opposite directions; and they have
some control over the pieces their opponent gets (by having the ability to select a piece that won’t be
spawned in the next turn).

The GAME
In every round there are two players: a left and a right player. The board is like a normal tetris board,
except the pieces of left player are "falling" from left to right, the pieces of the right player "falling" from
right to left. The players move after each other.
An example of "falling"

Left...................................Right
--
|..|
|...x............................oo........|
|...xx.---->...............<----.oo........|
|...x......................................|
|..|
|..|
..

Your pieces do not fall until the end of the board, it is stopped some steps before the another player’s wall.
Example

Left...................................Right
....|.<--right player’s piece
....|....will fall until this line
--
|..|
|.....x..........................oo........|
|.....xx.--->..............<----..o........|
|.....x...........................o........|
|..|
|...OO.....................................|
...OO.....................................
..........left player’s piece----->.|
..........will fall until this line.|

If two pieces "meet" somewhere on the board, the current player’s piece is stopped. The next player has
the chance to move away, however she doesn’t do so her piece will be also stopped. If a piece stopped, a
new piece generated and started from the player’s starting wall. The stopped piece become a stationary
wall. Example of stopped pieces on the board

31

Left...................................Right
--
|..|
|...x............................oo........|
|...xx.---->...............<----.oo........|
|...x..............O.......................|
|...............XXOO.......................|
|................XXO.......................|
..

Points
If there is a full column of stationary wall, it is destroyed, like in the normal tetris game. A player gets 1
point for each destroyed character belonging to her, and 5 points for each destroyed character belongs to
the other player. Example: left player destroys a column of stationary wall.

Left...................................Right
--
|................XX........................|
|................XOO.............oo........|
|..............x.XOO.............oo........|
|.........--->xxx..O.......................|
|.............X.XXOO.......................|
|.............X..XXO.......................|
.............XXOOOO.......................

Next step:
Left...................................Right
--
|.................X........................|
|.................OO.............oo........|
|................XOO.............oo........|
|...............XX.O.......................|
|..............X.XOO.......................|
|..............X..XO.......................|
..............XXOOO.......................

In the example above the left player got 6*1 + 1*5 = 13 points. After a column is destroyed, the stationary
wall "over" the destroyed column fall towards the other player’s wall. The stationary wall "under" the
destroyed column DOES NOT move anywhere.

Game over
The game is over, if a player’s element is stopped before it can fully leave the player’s wall. Example:
game over, right player lost the game

32

Left...................................Right
--
|...................................XX.O...|
|...x................................XXO...|
|...xx.................................OO.o|
|...x..............O................XXXOOoo| <--- piece cannot leave the wall
|...............XXOO................X......| next step it will stop
|................XXO.................XX.O..|
....................................XXOOO.

Moves
In one step a player can:

step up/down or not step
rotate the piece clockwise/ counter clockwise or not rotate

at the same time. So, for example one can rotate clockwise AND step up in the same step.

Piece generation
A piece is uniform randomly selected. However, a player (e.g. left player) can explicitely deny an element
for the other player (right player) in the next turn. So, the generator will uniform randomly select from all
the pieces, except the element denied by the left player.

Scoring
There will be 12 scoring periods (starting at odd hours: 9-11, 11-13 and so on) - these will show up as 12
"inputs" in the submission system. The evaluated scores will be the sums of points gained in the given
scoring period; the real scores will be scaled based on these (with the best team getting 166 points in one
scoring period). The total score one can get is 12 * 166 = 1992 points.

The Protocol

One team may maintain one TCP connection to the server at once (connecting to the server will kick the
previous connection, if any). Disconnecting from the server doesn’t affect any game state (ongoing games
will remain ongoing). A team may reconnect to continue their game where they left off.

Each connected team is either playing a game against an opponent, or waiting for the next game (it’s not
possible or necessary to play multiple games at once).

A new round starts every few minutes. At the beginning of a round, all teams that are currently connected
but are not playing, are paired up with other teams, and a new game is started for each pair.

All communication happens over TCP, in plain text, is line based (all messages in either direction are a
single line), all line endings are unix.

33

Messages from the server

Messages from the server may consist of multiple tokens, separated by single spaces.

NEXTROUND seconds

The team is waiting for the next game. The next round (when there’s a possibility of getting in a game
with an opponent) begins in seconds seconds.

AVAILABLE teams

A round begins. The message contains the number of teams currently connected and not playing.

LEFT |RIGHT nextturn left_score right_score board_rows left_piece right_piece

The LEFT or RIGHT message is sent to the left and right players at the beginning of each turn in the game
(the message type indicates which side is the currently connected team playing).

The nextturn field is either left or right ; indicates which side plays the next move.
The left_score and right_score fields are two integers that show the current score of each side.
The board_rows field is an integer that gives the number of rows in the playing board (this value will
not change).
The left_piece and right_piece fields are two integers that show what piece is each side currently
controlling.

Each LEFT or RIGHT message will be followed by board_rows * BOARD messages with the contents of
the playing board (from up to down).

BOARD row...

This message contains the subsequent row of the playing board. The row is a single string that is always
the same length.

spaces indicate empty places
x belongs to the current piece of the left player
X is a stationary wall belonging to the left player
o belongs ot the current piece of the right player
O is a stationary wall belonging to the right player

Messages sent to the server

The only kind of message a team can send is their current move. Moves are only accepted when it’s the
team’s turn in the game; only one move is accepted per turn.

Moves are encoded in three character messages:

34

[ckn][uds][0123456]

The first character is either c for rotate clockwise; k for rotate counter clockwise; or n for don’t
rotate.
The second character is either u for move up; d for move down; or s for stay (don’t move).
The third character is the piece inhibit control. If a new piece spawns for the opponent in the next
turn, they surely will not get the specified piece (if no new piece spawns, the third character is
ignored).

From the last sent BOARD message, teams have one second to make their move. Not making a move (by
not sending anything, or by not even being connected) implies a ns0 move (after a one second wait).

Pieces

This game has the usual tetris pieces, indexed from 0.

Piece 0

....
##..
##..
....

Piece 1

....
#...
###.
....

Piece 2

....
###.
#...
....

Piece 3

....

....
####
....

Piece 4

....
##..
.##.
....

Piece 5

35

....

.##.
##..
....

Piece 6

....
#...
##..
#...

36

	
	Contest
	Rules
	Submission site
	Contact

	A. Garbage (1000 points)
	
	Input
	Output
	Sample input
	Sample output

	B. Layout (1000 points)
	
	Input and Output
	Example

	C. Image compress (1000 points)
	
	Input
	Output
	Example

	D-E. Stars
	D. Stars - Navigation (1000 points)
	Catalog
	Input
	Output
	Samples

	E. Stars - Galaxy designer (1000 points)
	Protocol
	Scoring

	F. Fungus (3000 points)
	The Game
	Rules
	Map format
	Communication protocol
	Schedule

	G-H. Dogfight
	G. Dogfight - simulator (500 points)
	Introduction
	Simulation
	Protocol
	Messages from the server

	Commands from the client
	Task
	Scoring

	H. Dogfight - plotter (2500 points)
	Task
	Scoring
	Example

	I-J. Radio (500 + 1500 points)
	Task
	Networking and buffering
	Submission
	Scoring

	K. Punchcard (2800 points)
	4-bit CPU specification
	4-bit Registers
	Instruction set summary
	Data memory
	IPHI and IPLO

	Submission
	cards
	CRC
	submission procedure
	test-run submission
	for-score submission
	trace submission

	Tasks

	L. Multitetris (2000 points)
	The GAME
	Points
	Game over
	Moves
	Piece generation
	Scoring
	The Protocol
	Messages from the server
	Messages sent to the server
	Pieces

